
TWI
(I2C)

Two-Wire Serial Interface
(Inter-Integrated Circuit)

Biomedical Engineering, Inje University

I²C and TWI (1)

• I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master, multi-slave,

single-ended, serial computer bus.

• It is invented by Philips Semiconductor (now NXP Semiconductors).

• It is typically used for attaching lower-speed peripheral ICs to processors and

microcontrollers in short-distance, intra-board communication.

• Alternatively I²C is spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C).

• TWI (Two Wire Interface) is essentially the same bus implemented on various system-on-

chip processors from Atmel.

• In some cases, use of the term TWI indicates incomplete implementation of the I²C

specification.
 Not supporting arbitration or clock stretching is one common limitation, that is still useful for a

single master communicating with simple slaves that never stretch the clock.

I²C and TWI (2)

• Consists of
 SDA: Serial Data

 SCL: Serial Clock

• Simple, Powerful and Flexible Communication Interface with only two Bus Lines

• Both Master and Slave operation supported

• Device can operate as Transmitter or Receiver

• 7-bit Address Space allows up to 128 different Slave Addresses

• Multi-master Arbitration support

• Up to 400kHz Data Transfer Speed

• Slew-rate limited output drivers

• Noise Suppression Circuitry rejects spikes on Bus Lines

• Fully programmable Slave Address with General Call support

• Address Recognition causes Wake-up when AVR is in Sleep Mode

• Compatible with Philips’ I2C protocol

• Two TWI instances TWI0 and TWI1 (ATmega328P has one TWI only, TWI0)

ATmega328PB TWI Features

TWI Terminology

Term Description

Master The device that initiates and terminates a transmission.
The Master also generates the SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

The Power Reduction TWI bit in the Power Reduction Register (PRRn.PRTWI) must be written
to '0' to enable the two-wire Serial Interface.

• Both bus lines are connected to the positive supply voltage through pull-up resistors.

• The bus drivers of all TWI-compliant devices are open-drain or open-collector. This

implements a wired-AND function which is essential to the operation of the interface.

TWI Electrical Interconnection (1)

• A low level on a TWI bus line is generated when one or more TWI devices output a zero.

• A high level is output when all TWI devices tri-state their outputs, allowing the pull-up

resistors to pull the line high.

TWI Electrical Interconnection (2)

• START condition: A HIGH to LOW transition of the SDA line while SCL is HIGH.

• STOP condition: A LOW to HIGH transition of the SDA line while SCL is HIGH.

• START and STOP conditions are always generated by the master.

• Between a START and a STOP condition, the bus is considered busy, and no other master

should try to seize control of the bus.

TWI START and STOP Conditions (1)

PS

START condition STOP condition

SDA

SCL

• Bus Busy:
 After a START condition the bus is considered to be busy.

 No other master should try to seize control of the bus.

• Bus Idle:
 The bus becomes idle again after a STOP condition

TWI START and STOP Conditions (2)

idlebusy PS

START condition STOP condition

SDA

SCL

• REPEATED START condition: A new START condition is issued between a START and STOP

condition and is used when the Master wishes to initiate a new transfer without

relinquishing control of the bus.

TWI REPEATED START Conditions

• A typical TWI transaction consists of
 START condition

 Slave address byte (Bits7-1: 7-bit slave address; Bit0: R/W direction bit)

 One or more bytes of data

 ACK/NAK bit

 STOP condition

Typical TWI Transaction (1)

SMBDAT

SMBCLKSCL

SDA

• ACK
 Each byte that is received (by a master or slave) must be acknowledged (ACK) with a

low SDA during a high SCL.

• NACK
 If the receiving device does not ACK, the transmitting device will read a “not

acknowledge” (NACK), which is a high SDA during a high SCL.

Typical TWI Transaction (2)

SMBDAT

SMBCLKSCL

SDA

Typical TWI Transaction (3)

• The direction bit (R/W) occupies the least-significant bit position of the address.
 READ: The direction bit is set to logic 1

 WRITE: The direction bit is set to logic 0

SMBDAT

SMBCLKSCL

SDA

• The TWI interface may be configured to operate as a master and/or a slave.

• At any particular time, the interface will be operating in one of the following modes:
 Master Transmitter

 Master Receiver

 Slave Transmitter

 Slave Receiver

TWI: Transfer Modes

TWI: Master Transmitter Mode

S AData Byte PAAWSlave Addr. Data Byte

S START. Transmitted by ATmega328 TWI.

Slave Addr.

Data byte. Transmitted by ATmega328 TWI.

W Data direction (R/W) bit. Transmitted by ATmega328 TWI. Logic 0.

A ACK. Received by ATmega328 TWI.

P STOP. Transmitted by ATmega328 TWI.

Data Byte

Slave address. Transmitted by ATmega328 TWI.

TWI: Master Receiver Mode

S AData Byte PNARSlave Addr. Data Byte

S START. Transmitted by ATmega328 TWI.

Slave Addr. Slave address. Transmitted by ATmega328 TWI.

R Data direction (R/W) bit. Transmitted by ATmega328 TWI. Logic 1

A ACK. Received by ATmega328 TWI.

P STOP. Transmitted by ATmega328 TWI.

Data Byte Data byte. Received by ATmega328 TWI.

N
ACK or NACK. Transmitted by ATmega328 TWI depending on the state of the TWEA bit
in register TWCRn.

A

TWI: Slave Transmitter Mode

S AData Byte PNARSlave Addr. Data Byte

S START. Received by ATmega328 TWI.

Slave Addr. Slave address (TWARn register). Received by ATmega328 TWI.

R Data direction (R/W) bit. Received by ATmega328 TWI. Logic 1

A ACK. Transmitted by ATmega328 TWI.

P STOP. Received by ATmega328 TWI.

Data Byte Data byte. Transmitted by ATmega328 TWI.

A ACK. Received by ATmega328 TWI.

N NACK. Received by ATmega328 TWI.

TWI: Slave Receiver Mode

S AData Byte PAAWSlave Addr. Data Byte

S START. Received by ATmega328 TWI.

Slave Addr. Slave address (TWARn register). Received by ATmega328 TWI.

W Data direction (R/W) bit. Received by ATmega328 TWI. Logic 0

A

P STOP. Received by ATmega328 TWI.

Data Byte Data byte. Received by ATmega328 TWI.

N
ACK or NACK. Transmitted by ATmega328 TWI depending on the state of the
TWEA bit in register TWCRn.

Interfacing Application to the TWI in Master Transmitter (1)

START SLA+W A Data A STOPTWI Bus

1. Application writes
to TWCRn to initiate
transmission of
START

2.TWINT set.
Status code indicates
START condition sent.

3. Check TWSRn to see if
START was sent. Application
loads SLA+W into TWDRn, and
loads appropriate control
signals into TWCRn, making
sure that TWINT is written to 1,
and TWSTA is written to 0.

4.TWINT set.
Status code indicates
SLA+W sent, ACK received.

5. Check TWSRn to see if
SLA+W was sent and ACK
received. Application loads
data into TWDRn, and loads
appropriate control signals
into TWCRn, making sure
that TWINT is written to 1.

6.TWINT set.
Status code indicates
data sent, ACK received.

7. Check TWSRn to see if
data was sent and ACK
received. Application
loads appropriate control
signals to send STOP into
TWCRn, making sure that
TWINT is written to 1.

TWINT=1 TWINT=1 TWINT=1

TWI Status Codes for Master Transmitter Mode (1)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x08 A START condition has
been transmitted Load SLA+W 0 0 1 X SLA+W will be transmitted;

ACK or NOT ACK will be received.

0x10
A repeated START
condition has been
transmitted

Load SLA+W 0 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

Load SLA+R 0 0 1 X SLA+R will be transmitted;
Logic will switch to Master Receiver mode

0x18

SLA+W has been
transmitted;
ACK has been
received

Load data byte 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
be received

No TWDRn
Action 1 0 1 X Repeated START will be transmitted

No TWDRn
action 0 0 1 X STOP condition will be transmitted and TWSTO Flag

will be reset

No TWDRn
action 1 1 1 X STOP condition followed by a START condition will be

transmitted and TWSTO flag will be reset

TWI Status Codes for Master Transmitter Mode (2)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x20

SLA+W has been
transmitted;
NOT ACK has been
received

Load data byte 0 0 1 X Data byte will be transmitted and ACK or
NOT ACK will be received.

No TWDRn
action 1 0 1 X Repeated START will be transmitted.

No TWDRn
action 0 1 1 X STOP condition will be transmitted and

TWSTO Flag will be reset

No TWDRn
action 1 1 1 X STOP condition followed by a START condition will be

transmitted and TWSTO Flag will be reset

0x28

Data byte has been
transmitted;
ACK has been
received

Load data byte 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
be received

No TWDRn
action 1 0 1 X Repeated START will be transmitted

No TWDRn
action 0 1 1 X STOP condition will be transmitted and TWSTO Flag

will be reset

No TWDRn
action 1 1 1 X STOP condition followed by a START condition will be

transmitted and TWSTO flag will be reset

TWI Status Codes for Master Transmitter Mode (3)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x30

Data byte has been
transmitted;
NOT ACK has been
received

Load data byte 0 0 1 X Data byte will be transmitted and ACK or
NOT ACK will be received.

No TWDRn
action 1 0 1 X Repeated START will be transmitted.

No TWDRn
action 0 1 1 X STOP condition will be transmitted and

TWSTO Flag will be reset

No TWDRn
action 1 1 1 X STOP condition followed by a START condition will be

transmitted and TWSTO Flag will be reset

0x38 Arbitration lost in
SLA+W or data bytes

No TWDRn
action 0 0 1 X 2-wire Serial Bus will be released and not addressed

Slave mode entered.

No TWDRn
action 1 0 1 X A START condition will be transmitted when the bus

becomes free

TWI Status Codes for Master Receiver Mode (1)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x08 A START condition has
been transmitted Load SLA+R 0 0 1 X SLA+R will be transmitted;

ACK or NOT ACK will be received.

0x10
A repeated START
condition has been
transmitted

Load SLA+R 0 0 1 X SLA+R will be transmitted;
ACK or NOT ACK will be received

Load SLA+W 0 0 1 X SLA+W will be transmitted;
Logic will switch to Master Transmitter mode

0x38 Arbitration lost in
SLA+R or NOT ACK bit

No TWDRn
action 0 0 1 X 2-wire Serial Bus will be released and not

addressed Slave mode will be entered

No TWDRn
action 1 0 1 X A START condition will be transmitted when the bus

becomes free.

TWI Status Codes for Master Receiver Mode (2)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x40

SLA+R has been
transmitted;
ACK has been
received

No TWDRn
action 0 0 1 0 Data byte will be received and NOT ACK will be

returned.

No TWDRn
action 0 0 1 1 Data byte will be received and ACK will be returned.

0x48

SLA+R has been
transmitted;
NOT ACK has been
received

No TWDRn
action 1 0 1 X Repeated START will be transmitted.

No TWDRn
action 0 1 1 X STOP condition will be transmitted and TWSTO Flag

will be reset.

No TWDRn
action 1 1 1 X STOP condition followed by a START condition will be

transmitted and TWSTO Flag will be reset.

TWI Status Codes for Master Receiver Mode (3)

Status Code
(TWSRn)
Prescaler
bits are 0

Status of the 2-wire
Serial Bus and 2-wire
Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCRn

STA STO TWINT TWEA

0x50

Data byte has been
received;
ACK has been
returned.

Read data byte 0 0 1 0 Data byte will be received and NOT ACK will be
returned.

Read data byte 0 0 1 1 Data byte will be received and ACK will be returned.

0x58

Data byte has been
received;
NOT ACK has been
returned.

Read data byte 1 0 1 X Repeated START will be transmitted.

Read data byte 0 1 1 X STOP condition will be transmitted and TWSTO Flag
will be reset.

Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset.

ATmega328PB TWIn Pins

TWI Control Register (TWCRn)

TWINT TWEA TWSTA TWSTO TWWC TWEN TWIE

1 * * * 0 1 0 0

TWCR0

TWI Interrupt Enable
‘1’: Enable TWI0 Interrupt.

TWI Enable
‘1’: TWI0 takes
control over the I/O
pins connected to the
SCL and SDA pins.

TWI Write Collision Flag
This bit is set when attempting
to write to the TWDR0 when
TWINT is low. This flag is
cleared by writing the TWDR0
register when TWINT is high.

TWI START Condition
The application writes ‘1’ to the TWSTA bit
when it desires TWI0 to become a Master on
the 2-wire Serial Bus. The TWI0 hardware
checks if the bus is available, and generates
a START condition on the bus if it is free. This
bit must be cleared by software when the
START condition has been transmitted

TWI0 Interrupt Flag
This bit is set by hardware when the
TWI0 has finished its current job
and expects application software
response. It must be cleared by
software by writing a logic ‘1’ to it.

TWI0 Enable Acknowledge
If the TWEA bit is written to ‘1’,
the ACK pulse is generated
on the TWI0 bus if the
conditions are met.

TWI STOP Condition
Writing ‘1’ to the TWSTO bit in Master mode will
generate a STOP condition on the 2-wire Serial Bus
TWI0. When the STOP condition is executed on the
bus, the TWSTO bit is cleared automatically.

TWI Status Register (TWSRn)

TWS7 TWS6 TWS5 TWS4 TWS3 TWPS1 TWPS0

* * * * * 0 0 0

TWSR0

TWI Bit Rate Prescaler
00: Divide by 1
01: Divide by 4
10: Divide by 16
11: Divide by 64

TWI Status Bits
The TWS[7:3] reflect the status of the
TWI0 logic and the 2-wire Serial Bus.

System Clock: 16 MHz, SCL: 400 kHz
SCL freq = F_CPU/(16 + 2 * TWBR * Prescaler)
SCL freq = 16,000,000Hz/(16+2*12*1)=16,000,000Hz/40=400kHz

TWI Bit Rate Register (TWBRn)

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0

0 0 0 0 1 1 0 0

TWBR0

TWI Bit Rate Register
TWBR0 selects the division factor for the bit rate generator. The bit rate generator is a
frequency divider which generates the SCL clock frequency in the Master modes.

000011002 = 1210

System Clock: 16 MHz, SCL: 400 kHz
SCL freq = F_CPU/(16 + 2 * TWBR * Prescaler)
SCL freq = 16,000,000Hz/(16+2*12*1)=16,000,000Hz/40=400kHz

TWI0 Example (1)

• Specifications:

 CPU clock: 8 MHz

 SCL: 400 kHz

 ADXL345 Address

 Write (SLA_W): 0xA6

 Read (SLA_R): 0xA7

• Make an application which reads ID and X-, Y-,

Z-axis acceleration values.

 Register addresses for

 ID: 0x00

 X-axis: 0x32 and 0x33

 Y-axis: 0x34 and 0x35

 Z-axis: 0x36 and 0x37

• Use polling method

TWI0 Example (2)

ADXL345 I2C Device Addressing (1)

Multiple-Byte Write

Single-Byte Write

START STOP

ACK

Slave Addr + Write Register Address Data

ACK ACK

Master

Slave

START STOP

ACK

Slave Addr + Write Register Address Data

ACK ACK

Master

Slave

Data

ACK

TWI0 Example (3)

ADXL345 I2C Device Addressing (2)

Multiple-Byte Read

S N PSlave Addr + RSlave Addr + W Register Addr RsMaster A

ASlave A A Data Data

Rs Repeated START N NACKS START P STOPA ACKA

Single-Byte Read

S N PSlave Addr + RSlave Addr + W Register Addr RsMaster

ASlave A A Data

TWI0 Example (4) – Initialize ATmega328PB TWI0

#define SLA_W 0xA6
#define SLA_R 0xA7

int main(void)
{

uint8_t id;
uint8_t buff[6];
int accelX, accelY, accelZ;

uart0_init(38400UL); // 38,400 bps
twi0_init();

// Read ADXL345 ID_Register (reg. addr = 0x00)
id = twi0_read_adxl345_reg(0x00);
printf("ADXL345 Chip ID = %X\n", id);

// Set BW_RATE
twi0_write_adxl345_reg(0x2C, 0x0A); // 100 sampleing per sec

// Set DATA_FORMAT
twi0_write_adxl345_reg(0x31, 0x08); // +/-2g (4mg/LSB)

// Enter MEASUREMENT mode
twi0_write_adxl345_reg(0x2D, 0x08);

void twi0_init(void)
{

// Set Bit Rate (400 kHz)
// SCL freq = F_CPU/(16 + 2 * TWBR * Prescaler)
// 8,000,000Hz/(16+2*2*1)=8,000,000Hz/20=400kHz
TWSR0 = 0; // Prescaler = 1
TWBR0 = 2;

}

while (1)
{

while (!(twi0_read_adxl345_reg(0x30) & 0x80));

twi0_read_adxl345_reg_multi(6, 0x32, buff);
accelX = (int)(buff[0] + (buff[1] << 8));
accelY = (int)(buff[2] + (buff[3] << 8));
accelZ = (int)(buff[4] + (buff[5] << 8));
printf("accelX=%d, \taccelY=%d, \taccelZ=%d\n",

accelX, accelY, accelZ);
}

}

TWI0 Example (5) – Read single byte from ADXL345
uint8_t twi0_read_adxl345_reg(uint8_t reg_addr)
{

// Send START condition
TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);
// Wait for the transmission of START condition
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x08) // Error (Refer to Table 26-3 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

TWDR0 = SLA_W; // Load SLA_W into TWDR0 Register
// Clear TWINT to start transmission of SLA_W.
TWCR0 = (1 << TWINT) | (1 << TWEN);
// Wait for the transmission of SLA_W
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x18) // Error (Refer to Table 26-3 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

TWDR0 = reg_addr; // Load reg_addr to be read into TWDR0 Register
// Clear TWINT to start transmission of reg_addr.
TWCR0 = (1<<TWINT) | (1<<TWEN);
// Wait for the transmission of reg_addr
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x28) // Error (Refer to Table 26-3 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); // Send Repeated START
// Wait for the transmission of Repeated START
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x10) // Error (Refer to Table 26-4 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

TWDR0 = SLA_R; // Load SLA_R into TWDR0 Register
// Clear TWINT to start transmission of SLA_R.
TWCR0 = (1 << TWINT) | (1 << TWEN);
// Wait for the transmission of SLA_R
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x40) // Error (Refer to Table 26-4 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

// Clear TWINT to start reception. NAK will be returned.
TWCR0 = (1 << TWINT) | (1 << TWEN);
while (!(TWCR0 & (1 << TWINT))); // Wait for the reception
if ((TWSR0 & 0xF8) != 0x58) // Error (Refer to Table 26-4 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

// Send STOP condition
TWCR0 = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN);

return TWDR0;
}

TWI0 Example (5-1) – Read single byte from ADXL345
uint8_t twi0_read_adxl345_reg(uint8_t reg_addr)
{

// Send START condition
TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);
// Wait for the transmission of START condition
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x08) // Error (Refer to Table 26-3 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

TWDR0 = SLA_W; // Load SLA_W into TWDR0 Register
// Clear TWINT to start transmission of SLA_W.
TWCR0 = (1 << TWINT) | (1 << TWEN);
// Wait for the transmission of SLA_W
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x18) // Error (Refer to Table 26-3 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

TWDR0 = reg_addr; // Load reg_addr to be read into TWDR0 Register
// Clear TWINT to start transmission of reg_addr.
TWCR0 = (1<<TWINT) | (1<<TWEN);
// Wait for the transmission of reg_addr
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x28) // Error (Refer to Table 26-3 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); // Send Repeated START
// Wait for the transmission of Repeated START
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x10) // Error (Refer to Table 26-4 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

Single-Byte Read

S N PSlave Addr + RSlave Addr + W Register Addr RsMaster

ASlave A A Data

Rs Repeated START N NACKS START P STOPA ACKA

TWI0 Example (5-2) – Read single byte from ADXL345
TWDR0 = SLA_R; // Load SLA_R into TWDR0 Register
// Clear TWINT to start transmission of SLA_R.
TWCR0 = (1 << TWINT) | (1 << TWEN);
// Wait for the transmission of SLA_R
while (!(TWCR0 & (1 << TWINT)));
if ((TWSR0 & 0xF8) != 0x40) // Error (Refer to Table 26-4 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

// Clear TWINT to start reception. NAK will be returned.
TWCR0 = (1 << TWINT) | (1 << TWEN);
while (!(TWCR0 & (1 << TWINT))); // Wait for the reception
if ((TWSR0 & 0xF8) != 0x58) // Error (Refer to Table 26-4 of Datasheet)
{

display_error_code(TWSR0);
return 0;

}

// Send STOP condition
TWCR0 = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN);

return TWDR0;
}

Single-Byte Read

S N PSlave Addr + RSlave Addr + W Register Addr RsMaster

ASlave A A Data

Rs Repeated START N NACKS START P STOPA ACKA

TWI0 Example (6) – Write single byte to ADXL345
void twi0_write_adxl345_reg(uint8_t reg_addr, uint8_t data)
{

// Send START condition
TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);

// Wait for the transmission of START condition
while (!(TWCR0 & (1 << TWINT)));

if ((TWSR0 & 0xF8) != 0x08) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = SLA_W;

// Clear TWINT to start transmission of SLA_W.
TWCR0 = (1 << TWINT) | (1 << TWEN);

// Wait for the transmission of SLA_W
while (!(TWCR0 & (1 << TWINT)));

if ((TWSR0 & 0xF8) != 0x18) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = reg_addr; // Load reg_addr into TWDR0 Register

// Clear TWINT to start transmission of reg_addr.
TWCR0 = (1<<TWINT) | (1<<TWEN);

// Wait for the transmission of reg_addr
while (!(TWCR0 & (1 << TWINT)));

if ((TWSR0 & 0xF8) != 0x28) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = data; // Load data into TWDR0 Register

// Clear TWINT to start transmission of data.
TWCR0 = (1<<TWINT) | (1<<TWEN);

// Wait for the transmission of data
while (!(TWCR0 & (1 << TWINT)));

if ((TWSR0 & 0xF8) != 0x28) // Error
{

display_error_code(TWSR0);
return;

}

// Send STOP condition
TWCR0 = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN);

}

TWI0 Example (6-1) – Write single byte to ADXL345
void twi0_write_adxl345_reg(uint8_t reg_addr, uint8_t data)
{

// Send START condition
TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);

// Wait for the transmission of START condition
while (!(TWCR0 & (1 << TWINT)));

if ((TWSR0 & 0xF8) != 0x08) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = SLA_W;

// Clear TWINT to start transmission of SLA_W.
TWCR0 = (1 << TWINT) | (1 << TWEN);

// Wait for the transmission of SLA_W
while (!(TWCR0 & (1 << TWINT)));

if ((TWSR0 & 0xF8) != 0x18) // Error
{

display_error_code(TWSR0);
return;

}

Single-Byte Write

START STOP

ACK

Slave Addr + Write Register Address Data

ACK ACK

Master

Slave

Rs Repeated START N NACKS START P STOPA ACKA

TWI0 Example (6-2) – Write single byte to ADXL345
TWDR0 = reg_addr; // Load reg_addr into TWDR0 Register

// Clear TWINT to start transmission of reg_addr.
TWCR0 = (1<<TWINT) | (1<<TWEN);

// Wait for the transmission of reg_addr
while (!(TWCR0 & (1 << TWINT)));

if ((TWSR0 & 0xF8) != 0x28) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = data; // Load data into TWDR0 Register

// Clear TWINT to start transmission of data.
TWCR0 = (1<<TWINT) | (1<<TWEN);

// Wait for the transmission of data
while (!(TWCR0 & (1 << TWINT)));

if ((TWSR0 & 0xF8) != 0x28) // Error
{

display_error_code(TWSR0);
return;

}

// Send STOP condition
TWCR0 = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN);

}

Single-Byte Write

START STOP

ACK

Slave Addr + Write Register Address Data

ACK ACK

Master

Slave

Rs Repeated START N NACKS START P STOPA ACKA

TWI0 Example (7) – Read multiple bytes from ADXL345
void twi0_read_adxl345_reg_multi(uint8_t num, uint8_t start_addr, uint8_t buff[])
{

uint8_t i, return_code;

TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); // Send START condition
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of START condition
if ((TWSR0 & 0xF8) != 0x08) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = SLA_W; // Load SLA_W into TWDR0 Register
TWCR0 = (1 << TWINT) | (1 << TWEN); // Start sending of SLA_W.
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of SLA_W
if ((TWSR0 & 0xF8) != 0x18) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = start_addr; // Load start_addr into TWDR0 Register
TWCR0 = (1<<TWINT) | (1<<TWEN); // Start sending of start_addr
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of start_addr
if ((TWSR0 & 0xF8) != 0x28) // Error
{

display_error_code(TWSR0);
return;

}

TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); // repeated START
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of repeated START
if ((TWSR0 & 0xF8) != 0x10) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = SLA_R; // Load SLA_R into TWDR0 Register
TWCR0 = (1 << TWINT) | (1 << TWEN); // Start sending of SLA_R
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of SLA_R
if ((TWSR0 & 0xF8) != 0x40) // Error
{

display_error_code(TWSR0);
return;

}

for (i=0; i<num; i++)
{

if (i < num-1)
{

// Clear TWINT to start reception. ACK will be returned
TWCR0 = (1 << TWINT) | (1 << TWEN) | (1 << TWEA);
return_code = 0x50;

}
else
{

// Clear TWINT to start reception. NAK will be returned
TWCR0 = (1 << TWINT) | (1 << TWEN);
return_code = 0x58;

}

while (!(TWCR0 & (1 << TWINT))); // Wait for the reception
if ((TWSR0 & 0xF8) != return_code) // Error
{

display_error_code(TWSR0);
return;

}

buff[i] = TWDR0; // Store read data
}

TWCR0 = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN); // Send STOP condition
}

TWI0 Example (7-1) – Read multiple bytes from ADXL345
void twi0_read_adxl345_reg_multi(uint8_t num, uint8_t start_addr, uint8_t buff[])
{

uint8_t i, return_code;

TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); // Send START condition
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of START condition
if ((TWSR0 & 0xF8) != 0x08) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = SLA_W; // Load SLA_W into TWDR0 Register
TWCR0 = (1 << TWINT) | (1 << TWEN); // Start sending of SLA_W.
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of SLA_W
if ((TWSR0 & 0xF8) != 0x18) // Error
{

display_error_code(TWSR0);
return;

}

TWDR0 = start_addr; // Load start_addr into TWDR0 Register
TWCR0 = (1<<TWINT) | (1<<TWEN); // Start sending of start_addr
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of start_addr
if ((TWSR0 & 0xF8) != 0x28) // Error
{

display_error_code(TWSR0);
return;

}

TWCR0 = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); // repeated START
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of repeated START
if ((TWSR0 & 0xF8) != 0x10) // Error
{

display_error_code(TWSR0);
return;

}

Multiple-Byte Read

S N PSlave Addr + RSlave Addr + W Register Addr RsMaster A

ASlave A A Data Data

Rs Repeated START N NACKS START P STOPA ACKA

TWI0 Example (7-2) – Read multiple bytes from ADXL345
TWDR0 = SLA_R; // Load SLA_R into TWDR0 Register
TWCR0 = (1 << TWINT) | (1 << TWEN); // Start sending of SLA_R
while (!(TWCR0 & (1 << TWINT))); // Wait for the transmission of SLA_R
if ((TWSR0 & 0xF8) != 0x40) // Error
{

display_error_code(TWSR0);
return;

}

for (i=0; i<num; i++)
{

if (i < num-1)
{

// Clear TWINT to start reception. ACK will be returned
TWCR0 = (1 << TWINT) | (1 << TWEN) | (1 << TWEA);
return_code = 0x50;

}

else
{

// Clear TWINT to start reception. NAK will be returned
TWCR0 = (1 << TWINT) | (1 << TWEN);
return_code = 0x58;

}

while (!(TWCR0 & (1 << TWINT))); // Wait for the reception
if ((TWSR0 & 0xF8) != return_code) // Error
{

display_error_code(TWSR0);
return;

}

buff[i] = TWDR0; // Store read data
}

TWCR0 = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN); // Send STOP condition
}

Multiple-Byte Read

S N PSlave Addr + RSlave Addr + W Register Addr RsMaster A

ASlave A A Data Data

Rs Repeated START N NACKS START P STOPA ACKA

Biomedical Engineering, Inje University 54

	TWI�(I2C)
	슬라이드 번호 2
	슬라이드 번호 3
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	슬라이드 번호 7
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33
	슬라이드 번호 34
	슬라이드 번호 35
	슬라이드 번호 37
	TWI Control Register (TWCRn)
	TWI Status Register (TWSRn)
	TWI Bit Rate Register (TWBRn)
	TWI0 Example (1)
	TWI0 Example (2)
	TWI0 Example (3)
	TWI0 Example (4) – Initialize ATmega328PB TWI0
	TWI0 Example (5) – Read single byte from ADXL345
	TWI0 Example (5-1) – Read single byte from ADXL345
	TWI0 Example (5-2) – Read single byte from ADXL345
	TWI0 Example (6) – Write single byte to ADXL345
	TWI0 Example (6-1) – Write single byte to ADXL345
	TWI0 Example (6-2) – Write single byte to ADXL345
	TWI0 Example (7) – Read multiple bytes from ADXL345
	TWI0 Example (7-1) – Read multiple bytes from ADXL345
	TWI0 Example (7-2) – Read multiple bytes from ADXL345
	슬라이드 번호 54

